Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In situ dynamics of phosphorus in the rhizosphere solution of five species.

Identifieur interne : 004134 ( Main/Exploration ); précédent : 004133; suivant : 004135

In situ dynamics of phosphorus in the rhizosphere solution of five species.

Auteurs : Z Y Wang [États-Unis] ; J M Kelly ; J L Kovar

Source :

RBID : pubmed:15254121

Descripteurs français

English descriptors

Abstract

Root activity can modify the chemistry of the rhizosphere and alter phosphorus (P) availability and uptake. However, until recently, relatively little was known about the dynamics of soil solution P at the root surface because of our inability to measure in situ changes in solution P at the plant root. A mini-rhizotron experiment with corn (Zea mays L. cv. Stine 2250), soybean [Glycine max (L.) Merr. cv. Pioneer 3563), cottonwood (Populus deltoids L.), smooth brome (Bromus inermis Leyss.), and switchgrass (Panicum virgatum L.) was conducted to measure the spatial and temporal dynamics of P in the rhizosphere solution of a fine silty, P-rich calcareous soil (solid-phase total P concentration = 62 mg kg(-1), pH = 7.68) from western Iowa. Micro-suction cups were used to collect samples of soil solution from defined segments of the rhizosphere, and capillary electrophoresis (CE) was used to determine the P concentration of the soil solution. At the end of 10 d, a decreasing P concentration gradient in soil solution toward the root was observed in corn, cottonwood, and smooth brome. No clear rhizosphere effect was observed for soybean and switchgrass. Statistical analysis indicated significantly lower solution P concentrations in the rhizospheres of corn (p = 0.05), cottonwood (p = 0.01), and smooth brome (p = 0.01) compared with bulk soil solution. Results indicate that P depletion from rhizosphere soil solution depends on plant species. Under the conditions of this study, corn, cottonwood, and smooth brome were more effective in depleting solution P than soybean and switchgrass.

DOI: 10.2134/jeq2004.1387
PubMed: 15254121


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In situ dynamics of phosphorus in the rhizosphere solution of five species.</title>
<author>
<name sortKey="Wang, Z Y" sort="Wang, Z Y" uniqKey="Wang Z" first="Z Y" last="Wang">Z Y Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Natural Resource Ecology and Management, 253 Bessey Hall, Iowa State University, Ames, IA 50011-1021, USA. wangz@lincolnu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Natural Resource Ecology and Management, 253 Bessey Hall, Iowa State University, Ames, IA 50011-1021</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
<settlement type="city">Ames (Iowa)</settlement>
</placeName>
<orgName type="university">Université d'État de l'Iowa</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kelly, J M" sort="Kelly, J M" uniqKey="Kelly J" first="J M" last="Kelly">J M Kelly</name>
</author>
<author>
<name sortKey="Kovar, J L" sort="Kovar, J L" uniqKey="Kovar J" first="J L" last="Kovar">J L Kovar</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004 Jul-Aug</date>
<idno type="RBID">pubmed:15254121</idno>
<idno type="pmid">15254121</idno>
<idno type="doi">10.2134/jeq2004.1387</idno>
<idno type="wicri:Area/Main/Corpus">004239</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004239</idno>
<idno type="wicri:Area/Main/Curation">004239</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004239</idno>
<idno type="wicri:Area/Main/Exploration">004239</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">In situ dynamics of phosphorus in the rhizosphere solution of five species.</title>
<author>
<name sortKey="Wang, Z Y" sort="Wang, Z Y" uniqKey="Wang Z" first="Z Y" last="Wang">Z Y Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Natural Resource Ecology and Management, 253 Bessey Hall, Iowa State University, Ames, IA 50011-1021, USA. wangz@lincolnu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Natural Resource Ecology and Management, 253 Bessey Hall, Iowa State University, Ames, IA 50011-1021</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
<settlement type="city">Ames (Iowa)</settlement>
</placeName>
<orgName type="university">Université d'État de l'Iowa</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kelly, J M" sort="Kelly, J M" uniqKey="Kelly J" first="J M" last="Kelly">J M Kelly</name>
</author>
<author>
<name sortKey="Kovar, J L" sort="Kovar, J L" uniqKey="Kovar J" first="J L" last="Kovar">J L Kovar</name>
</author>
</analytic>
<series>
<title level="j">Journal of environmental quality</title>
<idno type="ISSN">0047-2425</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Kinetics (MeSH)</term>
<term>Phosphorus (pharmacokinetics)</term>
<term>Plant Development (MeSH)</term>
<term>Plant Roots (physiology)</term>
<term>Soil (MeSH)</term>
<term>Soil Pollutants (pharmacokinetics)</term>
<term>Solubility (MeSH)</term>
<term>Water Pollutants (pharmacokinetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cinétique (MeSH)</term>
<term>Développement des plantes (MeSH)</term>
<term>Phosphore (pharmacocinétique)</term>
<term>Polluants de l'eau (pharmacocinétique)</term>
<term>Polluants du sol (pharmacocinétique)</term>
<term>Racines de plante (physiologie)</term>
<term>Sol (MeSH)</term>
<term>Solubilité (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Phosphorus</term>
<term>Soil Pollutants</term>
<term>Water Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacocinétique" xml:lang="fr">
<term>Phosphore</term>
<term>Polluants de l'eau</term>
<term>Polluants du sol</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Kinetics</term>
<term>Plant Development</term>
<term>Soil</term>
<term>Solubility</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Développement des plantes</term>
<term>Sol</term>
<term>Solubilité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Root activity can modify the chemistry of the rhizosphere and alter phosphorus (P) availability and uptake. However, until recently, relatively little was known about the dynamics of soil solution P at the root surface because of our inability to measure in situ changes in solution P at the plant root. A mini-rhizotron experiment with corn (Zea mays L. cv. Stine 2250), soybean [Glycine max (L.) Merr. cv. Pioneer 3563), cottonwood (Populus deltoids L.), smooth brome (Bromus inermis Leyss.), and switchgrass (Panicum virgatum L.) was conducted to measure the spatial and temporal dynamics of P in the rhizosphere solution of a fine silty, P-rich calcareous soil (solid-phase total P concentration = 62 mg kg(-1), pH = 7.68) from western Iowa. Micro-suction cups were used to collect samples of soil solution from defined segments of the rhizosphere, and capillary electrophoresis (CE) was used to determine the P concentration of the soil solution. At the end of 10 d, a decreasing P concentration gradient in soil solution toward the root was observed in corn, cottonwood, and smooth brome. No clear rhizosphere effect was observed for soybean and switchgrass. Statistical analysis indicated significantly lower solution P concentrations in the rhizospheres of corn (p = 0.05), cottonwood (p = 0.01), and smooth brome (p = 0.01) compared with bulk soil solution. Results indicate that P depletion from rhizosphere soil solution depends on plant species. Under the conditions of this study, corn, cottonwood, and smooth brome were more effective in depleting solution P than soybean and switchgrass.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15254121</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>01</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0047-2425</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>33</Volume>
<Issue>4</Issue>
<PubDate>
<MedlineDate>2004 Jul-Aug</MedlineDate>
</PubDate>
</JournalIssue>
<Title>Journal of environmental quality</Title>
<ISOAbbreviation>J Environ Qual</ISOAbbreviation>
</Journal>
<ArticleTitle>In situ dynamics of phosphorus in the rhizosphere solution of five species.</ArticleTitle>
<Pagination>
<MedlinePgn>1387-92</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Root activity can modify the chemistry of the rhizosphere and alter phosphorus (P) availability and uptake. However, until recently, relatively little was known about the dynamics of soil solution P at the root surface because of our inability to measure in situ changes in solution P at the plant root. A mini-rhizotron experiment with corn (Zea mays L. cv. Stine 2250), soybean [Glycine max (L.) Merr. cv. Pioneer 3563), cottonwood (Populus deltoids L.), smooth brome (Bromus inermis Leyss.), and switchgrass (Panicum virgatum L.) was conducted to measure the spatial and temporal dynamics of P in the rhizosphere solution of a fine silty, P-rich calcareous soil (solid-phase total P concentration = 62 mg kg(-1), pH = 7.68) from western Iowa. Micro-suction cups were used to collect samples of soil solution from defined segments of the rhizosphere, and capillary electrophoresis (CE) was used to determine the P concentration of the soil solution. At the end of 10 d, a decreasing P concentration gradient in soil solution toward the root was observed in corn, cottonwood, and smooth brome. No clear rhizosphere effect was observed for soybean and switchgrass. Statistical analysis indicated significantly lower solution P concentrations in the rhizospheres of corn (p = 0.05), cottonwood (p = 0.01), and smooth brome (p = 0.01) compared with bulk soil solution. Results indicate that P depletion from rhizosphere soil solution depends on plant species. Under the conditions of this study, corn, cottonwood, and smooth brome were more effective in depleting solution P than soybean and switchgrass.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Z Y</ForeName>
<Initials>ZY</Initials>
<AffiliationInfo>
<Affiliation>Department of Natural Resource Ecology and Management, 253 Bessey Hall, Iowa State University, Ames, IA 50011-1021, USA. wangz@lincolnu.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kelly</LastName>
<ForeName>J M</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kovar</LastName>
<ForeName>J L</ForeName>
<Initials>JL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Environ Qual</MedlineTA>
<NlmUniqueID>0330666</NlmUniqueID>
<ISSNLinking>0047-2425</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014873">Water Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000493" MajorTopicYN="Y">pharmacokinetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063245" MajorTopicYN="N">Plant Development</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000493" MajorTopicYN="Y">pharmacokinetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012995" MajorTopicYN="N">Solubility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014873" MajorTopicYN="N">Water Pollutants</DescriptorName>
<QualifierName UI="Q000493" MajorTopicYN="Y">pharmacokinetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15254121</ArticleId>
<ArticleId IdType="pii">33/4/1387</ArticleId>
<ArticleId IdType="doi">10.2134/jeq2004.1387</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Iowa</li>
</region>
<settlement>
<li>Ames (Iowa)</li>
</settlement>
<orgName>
<li>Université d'État de l'Iowa</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Kelly, J M" sort="Kelly, J M" uniqKey="Kelly J" first="J M" last="Kelly">J M Kelly</name>
<name sortKey="Kovar, J L" sort="Kovar, J L" uniqKey="Kovar J" first="J L" last="Kovar">J L Kovar</name>
</noCountry>
<country name="États-Unis">
<region name="Iowa">
<name sortKey="Wang, Z Y" sort="Wang, Z Y" uniqKey="Wang Z" first="Z Y" last="Wang">Z Y Wang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004134 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004134 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15254121
   |texte=   In situ dynamics of phosphorus in the rhizosphere solution of five species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15254121" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020